

Recent developments in the CTEQ-TEA global analysis

Tie-Jiun Hou

Xinjiang University

December 29, 2018 5th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry

CTEQ-TEA group

• CTEQ – Tung et al. (TEA) in memory of Prof. Wu-Ki Tung, who established CTEQ Collaboration in early 90's.

Current members: Sayipjamal Dulat, Tie-Jiun Hou, Ibrahim Sitiwaldi (Xinjiang U.) Jun Gao (Shanghai Jiaotong U.) Marco Guzzi (Kennesaw State U.) Pavel Nadolsky, Timothy Hobbs, Keping Xie, Boting Wang (Southern Methodist U.) Joey Huston, Jon Pumplin, Carl Schmidt, Dan Stump, Jan Winter, C.-P. Yuan (Michigan State U.)

CT18 in a nutshell

- Start with CT14-HERAII (HERAII combined data released after publication of CT14)
- PDFSense (arXiv:1803.02777) to determine quantitatively which data will have impact on global PDF fit
- ePump (arXiv:1806.07950) on quickly exploring the impact of data prior to global fit within the Hessian approximation
- Examine a wide range of PDF parameterizations
- Use as much relevant LHC data as possible using applgrid/fastNLO interfaces to data sets, with NNLO/NLO K-factors, or fastNNLO tables in the case of top pair production
- Implement a parallelization of the global PDF fitting to allow for faster turn-around time
- Lagrange Multiplier studies to examine constraints of specific data sets on PDF distributions, and (in some cases) the tensions (useful information; will spend some time on this)

How sensitive is an experiment to a PDF? Can we know it before doing the global fit?

PDFsense predicts that the CMS jet data will have the largest impact

2018-03-05

P. Nadolsky, xFitter workshop, Krakow

see for example http://metapdf.hepforge.org/PDFSense

LHC data sets included in CT18

- 245 1505.07024 LHCb Z (W) muon rapidity at 7 TeV(applgrid)
- 246 1503.00963 LHCb 8 TeV Z rapidity (applgrid);
- 249 1603.01803 CMS W lepton asymmetry at 8 TeV (applgrid)
- 250 1511.08039 LHCb Z (W) muon rapidity at 8 TeV(applgrid)
- 253 1512.02192 ATLAS 7 TeV Z p_T (applgrid)
- 542 1406.0324 CMS incl. jet at 7 TeV with R=0.7 (fastNLO)
- 544 1410.8857 ATLAS incl. jet at 7 TeV with R=0.6 (applgrid)
- 545 1609.05331 CMS incl. jet at 8 TeV with R=0.7 (fastNLO)
- 573 1703.01630 CMS 8 TeV tT (p_T, y_t) double diff. distributions (fastNNLO)
- 580 1511.04716 ATLAS 8 TeV tT p_T and m_{tT} diff. distributions (fastNNLO)
- 248 1612.03016 ATLAS 7 TeV Z and W rapidity (applgrid) \rightarrow CT18Z
- also uses special small x factorization scale, mc=1.4 GeV
- serious changes in PDFs, so warrants a separate PDF

Non-perturbative parameterization forms

CT18par – sample result of using various non-perturbative parametrization forms.

Data treatment in CT18

Obs.	Expt.	fast table	NLO code	K-factors	R,F scales
Inclusive jet	ATL 7 CMS 7/8	APPLgrid fastNLO	NLOJet++	NNLOJet	$\mathrm{p_{T}}, \mathrm{p_{T}^{1}}$
p_{T}^{Z}	ATL 8	APPLgrid	MCFM	NNLOJet	$\sqrt{Q^2 + p_{T,Z}^2}$
W/Z rapidity W asymmetry	LHCb 7/8 ATL 7 CMS 8	APPLgrid	MCFM/aMCfast	FEWZ/MCFM	M _{W,Z}
DY (low,high mass)	ATL 7/8 CMS 8	APPLgrid	MCFM/aMCfast	FEWZ/MCFM	Q_{11}
tī	ATL 8 CMS 8	fastNNLO			$rac{\mathrm{H_T}}{4}$, $rac{\mathrm{m_T}}{2}$

Fitting code changes

upgrade to a parallelized version of the fitting code, through rearrangement of the minimization algorithm, rather than a redistribution of the data sets

De-correlation for incl. jet

- The corr. error "jes16" and "jes62" of ATLAS 7 TeV incl. jet data are decorrelated according to Table 6 of 1706.03192.
- In the case of CMS 7 TeV incl. jet, the correlated error "JEC2" is decorrelated base on 1410.6765.
- Moderate impact on gluon uncertainty

De-correlation for incl. jet

• Drop the low pileup data from 21-74 GeV

- Treatment of systematic error for CMS 8 TeV incl. jet is done as described as in 1607.03663.
- $\chi^2 = 168$ (for 185 points)before fitting; 132 after fitting
- Results in some reduction in gluon uncertainty at moderate and high x

Top Quark Pair differential distributions

- Modest effect observed if *t* data are included together with the Tevatron and LHC jet production data.
- Its impact on gluon PDF is consistent with jet data, though jet data provide stronger constraint.

We currently include the following data

Data	Npts	χ^2 /Npts(no fit)	$\chi^2/Npts$
ATLAS 8 TeV abs. $d\sigma/dp_T$, $d\sigma/dm_{t\bar{t}}$	15	1.01	1.04
CMS 8 TeV Nor. $d^2\sigma/dp_T dy_t$	16	1.92	1.89

Lagrange Multiplier scan: g(0.01, 125 GeV)

• Top: CT18

- HERA1+II data set provides the dominant constraint, followed by ATLAS, CDF2,D02 jet production, HERA charm...
- tt double differential cross sections provide weaker constraints
- Lower: CT18Z
 - a 1% lower NNLO gluon in the Higgs production region than for CT14/ CT18

Lagrange Multiplier scan: g(0.3, 125GeV)

- Top: CT18
- Lower: CT18Z
- Opposite pulls from ATLAS7/ CMS7 jet production on one hand, and CMS8 jet production on the other hand
- Similarly, ATLAS tt distributions (dmtt, dpTt) and CMS double tt distributions (dpTtdyt) at 8 TeV impose weak opposite pulls
- Constraints from ATLAS8 Z pT production are moderate

Lagrange Multiplier scan: $(s+\bar{s})/(\bar{u}+\bar{d})$ at x = 0.1, 0.3

- LHCb W and Z (7,8 TeV) data prefer a larger s-PDF in the small-x region.
- NuTeV dimuon data strongly prefer a smaller R_s value, while the ATLAS8 Z p_T data prefer a slightly larger R_s value.
- ATLAS 7ZW data strongly prefer a larger R_s value.

χ^2 of new data in CT18

			CT18	CT18Z
ID	Observable	Npts	χ^2/N	χ^2/N
245	LHCb 7 TeV ZW	33	1.5	1.2
246	LHCb 8 TeV Z	17	1.4	1.2
248	ATLAS 7 TeV ZW			2.4
249	CMS 8 TeV W asym.	11	0.5	0.5
250	LHCb 8 TeV WZ	34	2.1	1.7
253	ATLAS 8 TeV DY $d^2\sigma/dydM$	27	1.6	1.4
542	CMS 7 TeV jet	158	1.3	1.3
544	ATLAS 7 TeV jet	140	1.5	1.5
545	CMS 8 TeV jet	185	1.3	1.2
573	CMS 8 TeV $d^2 \sigma_{t\bar{t}}/dp_T^t dy^t$	16	1.9	1.9
580	ATLAS 8 TeV $d\sigma_{t\bar{t}}/dp_T^t$ and $d\sigma_{t\bar{t}}/dm_{t\bar{t}}$	15	1.1	1.4
Total		3493/3681	1.2	1.2

PDF Luminosity

17/19

 $\alpha_{s}(M_{z})$

- The fixed target F_2 data and HERA DIS data prefer smaller α_s value.
- The ATLAS 8TeV Z p_T , ATLAS 8 ttb and ATLAS 7 TeV incl. jet data, bring the central value of $\alpha_s(M_z)$ from $0.115^{+0.006}_{-0.004}$ (CT14) to 0.1164 ± 0.0026 (CT18).

- We observe some impact on PDFs from ATLAS and CMS incl. jet data, LHCb WZ production and ATLAS 8 TeV Z p_T data.
- CT18Z is the alternative PDF with the inclusion of ATLAS 7TeV ZW data, which has strong impact to PDF, associate with $m_c = 1.4$ GeV.
- Basically final versions of CT18/CT18Z, with paper draft in preparation